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Internal ballistics describes the combustion of solid propellant within a closed com-
bustion chamber. This is achieved by modelling a mixture of incompressible solid
particles and compressible reactive gases with averaged equations of two-phase flow.
The combustion of the solid is described with interaction terms that define the rate of
mass, momentum and energy exchange from solid into gas. This work concentrates
on modelling ignition and the initial stages of combustion, proposing the concept
of ‘gaseous ignition’ by including time-scales of chemical reaction in the gas phase.
These non-equilibrium effects are placed firmly within the context of internal ballis-
tics by making direct comparisons between experimental pressure-time histories. In
particular, excellent agreement can be achieved between numerical simulations and
experimental work by assuming a two-stage reaction process during which the rate
of chemical energy release will significantly differ from a single exothermic reaction.
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1. Introduction

Internal ballistics modelling involves the combustion of highly energetic propellant
materials. Propellants burn rapidly, releasing large quantities of chemical energy,
which explains their use as the fuel that powers rocket motors and ballistic weapons.
Traditionally, propellant has been used in solid form—such as granular or stick
form—and this work will focus on the combustion of these types.

Early theoretical work on internal ballistics was primarily concerned with calcula-
tion of the exit velocity of the projectile. The force on the projectile is predicted by
calculating the pressure history at the projectile base, from which the acceleration
and projectile velocity can be deduced. The methodology is well documented in the
book by Corner (Great Britain Ministry of Supply Scientific Advisory Council 1951).
The first models proved to be moderately accurate at calculating muzzle velocities
and peak pressure, but no serious attempt was made to include flow dynamics in
the chamber and the problem was regarded as a ‘well-stirred’ or ‘lumped parameter’
system. Vielle’s law of burning was recognized at this time, which provides a formula
for the rate of regression of the solid propellant surface ṙ as a function of external
gas pressure and a number of empirical constants specific to each propellant type.
In addition, effort was devoted towards constructing formulae that would provide
the rate of change of burning surface area over time for quite complicated propel-
lant geometries. A reasonable assumption to make is that the exposed area of any
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propellant shape will regress evenly subject to some uniform external pressure and
temperature, described as ‘parallel burning’. From this the idea of the form function
was constructed by Corner—detailed in Great Britain Ministry of Supply Scientific
Advisory Council (1951)—which provides a relationship between the rate of burning
ṙ and the exposed surface area Sp. The combination of these two ideas produces a
method of measuring the rate of mass transfer from solid to gas:

ṁ = ρpSpṙ, (1.1)

where ṁ (kg m−3 s−1) is the rate of gaseous mass addition and ρp (kg m−3) is the
density of the solid propellant. Along with this, an experimentally derived energy
of combustion is taken for the propellant Q (J kg−1) and the rate of energy and
pressure increase in the gas phase can be deduced. During these studies, it was soon
apparent that at high pressures the reactant gas could not be described accurately
using the ideal gas equation and a covolume equation was adopted. Both Vielle’s law
and Corner’s theory are key elements in internal ballistics modelling today.

These simple ideas were soon extended to one dimension and it was quickly
apparent that not only did the gas dynamics need to be considered but also the
solid-particle motion. From these beginnings sprung the multidimensional multi-
phase models that are employed today in internal ballistic codes. Final solutions
are obtained using a combination of high-speed computers and advanced numerical
methods.

However, despite these advances that are centred around the action of modern
day computer facilities, some of the dominant physical mechanisms of the combus-
tion cycle have been overlooked, in particular ignition. Ignition modelling has been
quite crude in many internal ballistics codes. Many assumed that once the gas tem-
perature increases above some experimentally measured ‘ignition temperature’, then
the propellant grain would burn at a rate governed by Vielle’s law. The weakness of
the ignition temperature idea is that it is supposed to encompass all of the intricate
heat-transfer processes between the gas and solid, solid thermochemistry, solid-phase
reactions and gas-phase reactions. A slight improvement to this involved the solu-
tion of a heat-conduction problem between the gas and solid-surface as described
in Peretz et al . (1973). In this case ignition is deemed to occur once the solid sur-
face attains some empirically derived temperature after which combustion continues
according to Vielle’s law. Both of these theories do not explain how experiments can
measure distinct time differences between first gasification followed by ignition.

As summarized in the comprehensive review of solid propellant ignition modelling
by Hermance (1984), ignition is controlled by a gas-phase reaction that is directly
influenced by solid-surface reactions. A model that includes gas-phase reaction to
describe the ignition process and supporting numerical methods has already been
described in Clarke & Lowe (1996) and Lowe et al . (1995). These ideas were developed
in Lowe (1996) to include a pyrolysis reaction at the solid surface dependent on
surface temperature. In this work the very simple chemical gas-phase regime assumed
in Clarke & Lowe (1996) will be built upon to produce chemical schemes closer to the
known reactions that occur during propellant combustion. These chemical schemes
will be included in the one-dimensional two-phase flow equations. To test the effect of
the various reactions, two simulations will be illustrated: the first is a test problem
for which the early ignition phase of the combustible two-phase will be analysed.
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The second simulates the entire combustion cycle and comparisons are made with
experimental data.

The configuration of an internal ballistic combustion chamber involves a combus-
tion chamber that is almost cylindrical, although some tapering occurs at either end.
This contains solid propellant granules, which are assumed to be evenly dispersed in
the chamber volume (the effect of gravity is neglected). A perforated tube is located
along part of the axial length through which a hot inert ‘igniter’ gas is vented at a
prescribed rate ṁig (kg m−3 s−1). Heat transfer between the hot igniter gases and
solid granules raises the temperature of the solid-propellant surface. Subsequently,
the solid will gasify, producing a source of hot reactant gas that will increase the
pressure in the chamber. A projectile, positioned at one extreme of the chamber,
begins to move once some critical pressure has been attained at the projectile base.
As the projectile moves down the barrel of the weapon, resistive forces are trans-
mitted between the barrel wall and the projectile. This is at least a two-dimensional
problem; however, primarily it is the average pressure at any axial length that is
of interest and so for simplicity the quasi-one-dimensional† configuration will be
assumed whereby the sources of igniter gas are evenly distributed over the cross-
sectional area.

The modelling of the combustion cycle described above is achieved through the
solution of average two-phase flow equations. The phases involved are the incompress-
ible solid particles and the compressible reactive gases of combustion. The equations
as originally derived by Gough (1974) are

∂

∂t
(ρε) +

∂

∂x
(ρεu) = ṁ + ṁig, (1.2)

∂

∂t
(ρεu) +

∂

∂x
(ε(ρu2 + p)) = p

∂ε

∂x
+ ṁup − D, (1.3)

∂

∂t
(εE) +

∂

∂x
(εu(E + p)) = ṁ(Q + κp) + ṁigQig − p

∂(1 − ε)(up)
∂x

− upD − qloss,

(1.4)
∂

∂t
(ρp(1 − ε)) +

∂

∂x
(ρp(1 − ε)up) = −ṁ, (1.5)

∂

∂t
(ρp(1 − ε)up) +

∂

∂x
((1 − ε)(ρpup

2 + pint)) = −(1 − ε)
∂p

∂x
− ṁup + D, (1.6)

∂

∂t
(N) +

∂

∂x
(Nup) = 0; (1.7)

where ε is the porosity (volume fraction occupied by the gas), u is the gas velocity,
up is the particle velocity, p is the gas pressure, κp = 1

2u
2
p is the kinetic energy of the

particles, D is the viscous drag, pint is the intergranular stress and N is the number of
solid particles. Fragmentation or coalescence of the particles is not assumed to occur.
Q is the energy of formation of the propellant and Qig is the energy of formation of
the igniter. The total energy E of the gas was defined in Gough’s model as

E = ρ(e + κ), (1.8)

† Includes small changes of cross-sectional area in a quasi-one-dimensional manner.
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where e is the thermal energy and κ = 1
2u

2. A covolume equation of state is consid-
ered to hold for the gas:

e =
p(1 − bρ)
ρ(γ − 1)

, (1.9)

where p is the gas pressure, b (m kg−3) is the covolume and γ is the ratio of specific
heats. During the solution of the solid-momentum equation, the buoyancy force on
the solid-particle movement is assumed to be negligible. The viscous drag between
the gas and the solid will alone control the particle movement. Omitting the pressure
gradient term has been chosen as a physically plausible way of removing ill-posedness
from the system where the intergranular stress is non-zero. The ill-posedness has been
recognized by many previous authors (Drew 1983; Ransom & Hicks 1984) to be an
undesirable feature of the incompressible two-phase flow equations and the neglect
of buoyancy forces has been suggested (Soo 1979; Smirnov & Dimitrenko 1992).
Empirical relations for the drag and intergranular stress are detailed in Lowe (1996).

2. Multiple reactions

The intention is to incorporate time-scales associated with chemical times of a series
of general gas-phase reactions that are occurring during propellant combustion.

Assuming that any solid or surface reactions are thermally neutral, then the con-
servation of species’ mass and energy can be rewritten as follows:

∂

∂t
(ρcαε) +

∂

∂x
(ρεucα) = ṁα + Kα, α = 1, . . . , n, (2.1)

∂

∂t
(εE) +

∂

∂x
(εu(E + p)) = (ṁ + ṁig)(eth + pv)

+
n∑

α=1

ṁαQα − ṁL + ṁigQ
′
ig − p

∂(1 − ε)(up)
∂x

− upD − qloss, (2.2)

where cα is the mass fraction of species α in the gas phase. In general,

E ≡
n∑

α=1

[cα(eα(T ) + Qα)] + κ, (2.3)

where eα(T ) is the thermal energy of species α, assumed to depend only upon the
local absolute temperature T , and Qα is the specific energy of formation of that
species. Note that ṁ is formally made up from contributions from all of the species,
so that one can write

ṁ =
n∑

α=1

ṁα. (2.4)

For simplicity it will be assumed that eα = e∀α. It is assumed that, to gasify the solid
propellant, L units of energy per unit mass of propellant may need to be supplied
from the gas phase. The chemical kinetics of the possible controlling reaction in
the combustion process will be discussed in a little more detail below. However,
before this the main differences between the energy equations (1.4) and (2.2) will be
described.
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(a) Conditions at the gas–solid interface

Of particular significance are the very different source terms that appear on the
right-hand side of the energy equations (1.4) and (2.2). These source terms represent
the addition of energy into the closed volume due to the combustion of the propellant
material and igniter gas. Equation (1.4) describes how the solid will gasify at rate
ṁ and the corresponding energy of formation of the solid is given as Q. Thus, this
actually represents the rate of energy loss from the solid propellant. Similarly, all
energy increase due to the combustion of hot igniter gas is described by the term
ṁigQig.

The source term in equation (2.2) describes the increase in energy in the gas phase
due to propellant combustion—rather than the decrease of energy in the solid. Along
with this it also distinguishes between the energy increase due to the addition of a
gas into a closed system, irrespective of whether it is a reactive gas or not, and energy
increase due to gas-phase chemical reaction. The former of these contributions from
both the propellant and igniter gases is (ṁ + ṁig)(eth + pv) and the latter is given
as

∑n
α=1ṁαQα + ṁigQ

′
ig, where Qα is the energy of formation of the various α gas-

phase reactants and Q′
ig is the chemical energy of the igniter gas. Finally, the term

ṁL represents latent heat requirements to gasify the solid propellant material. For
the source terms in equations (1.4) and (2.2) to be equal the following equivalences
must hold at the interface:

ṁ(eth + pv) +
n∑

α=1

ṁαQα − ṁL ≡ ṁ(Q + κp), (2.5)

ṁig(eth + pv) + ṁigQ
′
ig ≡ ṁig(Qig + κig). (2.6)

The kinetic energy of the igniter κig is assumed to be negligible in this study.

(b) One-step reaction

Assume that the propellant R(s) gasifies and produces reactant gases that are
controlled by a single irreversible reaction

R(s) ṁ−→ X(g) + F (g) Ω−→ 2P (g), (2.7)

where F (g) is a fuel, X(g) is an oxidizer and P (g) is an inert product gas. If the
molecular weights of the three species are assumed to be the same and equal to W ,
then the reaction rates are

KX = K = −ρΩcXcF , KF = K = −ρΩcXcF , KP = −2K = 2ρΩcXcF , (2.8)

where Ω (s−1) is the chemical frequency, which can be given as

Ω = Agp exp(−EA/RT ). (2.9)

Here (Agp) is the frequency of binary collisions in the gas phase and EA is the
activation energy. Furthermore, it is assumed that the mass that is introduced into
the system is half composed of X and the other half is F , so that ṁX = ṁF = 1

2ṁ.
Using the simplifications described above, the mass-fraction equation (2.1), where
α = X,F , gives

∂(ρεcα)
∂t

+
∂(ρεucα)

∂x
= K + 1

2ṁ. (2.10)
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These species equations for fuel and oxidant, equation (2.10) for α = F and X,
respectively, can be subtracted, and substituting the mass equation (1.2) into this
difference provides the relation

(ṁ + ṁig)(cF − cX) + ρε
D(cF − cX)

Dt
= 0. (2.11)

Equation (2.11) can be integrated formally to give

(cF − cX) = (cF − cX)0 exp
(∫ t

0

(ṁ + ṁig)
ρε

∂t

)
. (2.12)

One possible solution of this is to make cX = cF ≡ c, which will be done here, and
the above equations for the species can be reduced to only one species equation that
applies to both X and F , namely

∂(ρεc)
∂t

+
∂(ρεuc)

∂x
= 1

2ṁ − ρΩc2. (2.13)

Substitution of the interface conditions defined in equations (2.5) and (2.6) into the
source terms of the energy equation (2.2) defines the following energy equation that
includes the evolution of a gas-phase reactant:

∂

∂t
(εE) +

∂

∂x
(εu(E + p)) = −p

∂(1 − ε)up

∂x
+ ṁ(Q + κp) + ṁigQig − upD − qloss,

(2.14)

where now the total energy is redefined from equation (2.3) as

E = ρ(e + κ + 2cQg). (2.15)

(c) Two-step reaction

Now assume that a reduced chemical scheme for the burning of solid propellant
R(s) can be summarized by the following sequence of reactions:

R(s) ṁ−→ R(g) ΩR−−→ F (g) + X(g) Ω−→ 2P (g). (2.16)

The solid propellant R(s) is gasified at the rate ṁ and converted into R(g), which
has an energy of formation QR. The latter reactant is broken down into gaseous fuel
and oxidizer species F and X, which again have energies of formation Qg, in a rapid
(highly localized) reaction, whose chemical frequency, or inverse chemical time, is
given by ΩR; X and F react at a local rate, controlled by the frequency Ω, to form
product species P whose energy of formation is zero. Use of the assumption of equal
molecular weights for X(g) and F (g) and assuming that the product gas of the first
reaction is half composed of X and F , it is clear that

KR = −ρΩRcR, KF ≡ KX = 1
2ρΩRcR − ρΩc2 = −1

2KR + K. (2.17)

The governing equations can then be derived from equations (2.1), (2.2) as (mass-
fraction equations are defined for reactant R and X or F )

∂

∂t
(ρεcR) +

∂

∂x
(ρεcRu) = ṁ + KR, (2.18)

∂

∂t
(ρεc) +

∂

∂x
(ρεcu) = −1

2KR + K, (2.19)
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0.127 m

cross-section
0.762 m

igniter 0.01368 m2

Figure 1. The one-dimensional combustion chamber.

the energy equation is (2.14) and the total energy is defined as

E = ρ(e + κ + 2cQg + cRQR). (2.20)

(d) Fast reactions

In this section the relationship between the simple equilibrium model and the
models that include finite-rate gas-phase chemical reactions will be explored. It is
clear that the models must be equivalent under some limiting conditions, namely
when gas-phase chemical times approach zero, implying that the chemical frequency
must tend to infinity.

If the one-step reaction is such a fast reaction, then to remain physically meaningful
for Ω → ∞, K must remain bounded. In this case c → 0 and consequently Dc/Dt →
0. Substitution into equation (2.13) implies that K → 1

2ṁ, which on substitution
into the energy equation (2.15) shows how the non-equilibrium governing equations
tend to the equilibrium system described in equations (1.2)–(1.8).

The same arguments can be applied to the two-step system: in this case for the first
reaction to be infinitely fast it follows that cR → 0 and DcR/Dt → 0. This implies that
KR → ṁ and using the equivalent arguments for the second step K → 1

2KR → 1
2ṁ.

Again by making these assumptions the equations will revert back to the equilibrium
system.

For these investigations let us assume that the single-step reaction and the second
part of the two-step reaction are not infinitely fast. However, if the first stage of
the two-step reaction is in equilibrium, then all energy release associated with this
reaction occurs instantaneously on gasification and the solution of equation (2.18)
will not be necessary (since this occurs infinitely fast).

3. Numerical methods

The numerical method used to solve the two-phase system, equations (1.2)–(1.7),
along with species equation (2.13) will now be outlined.

The system of partial differential equations can be written in the form

Ut + F (U)x = S(U), (3.1)

where U , the vector of conserved variables, is given by

U = (Ug,Up)T, where Ug = (ρ, ρc, ρu,E)T, Up = (ρp, ρpup, N)T (3.2)

and the flux and source terms, F (U) and S(U), are functions of U .
The method of fractional steps (Yanenko 1977) is used to split the problem, as

originally suggested by Toro (1989a), into subproblems so that the flow equations
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Figure 2. The pressure (a) and mass fraction (b) in the combustion chamber over the first 2 ms.

and source terms may be handled separately. It is then apparent that the solid-phase
flow equations completely decouple from the gas-phase equations and so they can
be solved independently from the gas-phase flow equations. The solution procedure
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Figure 3. The reaction rate (a) and temperature (b) in the combustion chamber over
the first 2 ms.

then involves individual hyperbolic problems for the gas phase and the solid phase,
followed by the solution of a system of ordinary differential equations that takes into
account the source terms S(U). The hyperbolic problems are given as

(Ug)t + F (Ug)x = 0, (Up)t + F (Up)x = 0. (3.3)
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Each is solved using a shock-capturing finite-volume scheme, the weighted-average-
flux scheme (WAF) (Toro 1989b). This is a second-order extension of Godunov’s
method and requires the solution to the Riemann problem between adjacent cells of
the spatial domain. An approximate solution to the Riemann problem—the HLLC
method (Toro et al . 1994)—is adopted. This is entirely for reasons of efficiency since
the solution of the gas-phase Riemann problem with a covolume equation of state
necessitates extensive use of iterative methods to construct an exact solution. The
HLLC method constructs the solution by calculating estimates of the wave speeds
from the initial conditions. These are formulated in an adaptive manner for both gas-
phase and solid-phase Riemann problems depending on the difference in the initial
values (details can be found in Lowe (1996)).

Finally, the system of ordinary differential equations is given as

(Ug)t = S(Ug), (Up)t = S(Up). (3.4)

These are solved together using a stiff-solver package (Hindmarsh 1980) that can
readily deal with the relatively short time-scales associated with chemical kinetics.

4. Ignition simulation

This first simulation is on a test problem over the early stages of combustion. The
chamber is as illustrated in figure 1. Igniter gas is vented over the first sixth of the
chamber. The projectile base remains fixed due to the low pressures throughout this
period.

Figure 2 illustrates flow-variable histories over the first 2 ms in the combustion
chamber. The igniter flux distribution causes the temperature over the first sixth of
the chamber to increase. This promotes the formation of a compression wave that
travels towards the far end of the chamber and reflects, which can be seen as the
straight-line feature on the pressure picture between (0.14 m, 0 ms) and (0.762 m,
0.85 ms). The temperature in the igniter-flux region and behind the compression
wave is higher than the gasification temperature (420 K) and so mass fraction is
introduced into the chamber as seen from the mass-fraction plot. However, there
is also another straight-line feature on the mass-fraction plot that lags behind the
compression wave between positions (0.18 m, 0.25 ms) and (0.66 m, 1 ms). This was
first identified in previous work (Clarke & Lowe 1996) as the movement of reactant
species produced in the hot igniter-flux region and advected into cooler regions, and
will be described as a ‘reactant wave’. However, while the mass-fraction plot can
display the change in reactant concentration within the chamber, a more important
quantity is the reaction rate distribution. This relationship, dependent on species
concentration and temperature, controls the rate of energy release in the chamber.
Figure 3 displays the reaction rate and temperature in the chamber. The absence of
curves at early times in figure 3a indicates how the reaction rates are much higher
in the region defined between points (0.762 m, 0.75 ms), (0.66 m, 1 ms) and the line
x = 0.66 m. The point (0.66 m, 1 ms) is significant for it defines the position at which
the reflected shock and the reactant wave intersect. This provides a combination of
high concentration of reactant species and high temperature, consequently producing
higher reaction rates.

Finally, figures 4 and 5 describe profiles of solid-particle motion in the chamber.
Figure 4 illustrates both particle velocity and porosity distribution at times 0.5, 0.75
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Figure 4. Particle velocity and porosity profiles at 0.5, 0.75 and 1 ms.
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Figure 5. Particle velocity and porosity profiles at 1.25, 1.5 and 2 ms.

and 1 ms. Throughout these times the solid is accelerating, at a relatively low speed,
away from the primer region, dragged by the gas which is moving at a higher velocity
towards the far end of the chamber. This creates a dense region of solid around the
end of the primer tube and sparser density of solid at the primer. Figure 5 represents
the motion at times 1.25, 1.5 and 2 ms. At these times, from figure 2, the reflected
shock is such that the gas velocity is negative and moving towards the primer end.
However, figure 5 shows how the particles are still moving in the opposite direction
and the effect of drag, at these times, is only sufficient to decelerate the motion,
recognized from the fact that the velocity profiles are getting closer together.

The above findings are counter-intuitive; a brief glance at the chamber configu-
ration might immediately lead to the conclusion that the primer will create higher
temperatures and pressures at this end of the chamber. However, the inclusion of
chemical kinetics immediately reveals that the highest rates of reaction occur at the
far end of the chamber. Further, the modelling of solid-particle motion also contra-
dicts this since the primer configuration assists movement of particles away from the
region. Since the bulk of the energy released in the chamber is due to the propellant,
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Figure 6. Pressure distribution at locations one (a) and three (b): experiment (—) and
equilibrium simulation (- - -).

and not the small amount of energy from the igniter powder, the lower density along
the primer may eventually mean lower temperatures and pressures.

5. Test problem

The ballistic problem will be investigated, where the incentive is to predict the pres-
sure at the projectile base so that the force on the projectile can be calculated. From
this information the velocity and time at which the projectile leaves the muzzle can
be deduced. Experimental data† give the pressure at three different axial locations
along the axial length—one reading, which will be denoted as location one, is close
to the breech, the second is centrally located in the chamber and the third, loca-
tion three, is close to the initial projectile position. Figure 6 shows pressure plots
at locations one and three where experimental data are given by the solid line. The
experiment displays a 2 ms delay prior to any noticeable pressure increase. Between
times 2 ms and 6 ms there is a gradual increase in pressure from 0.1 to 25 MPa.
Finally, between 6 ms and 10 ms, the rate of pressure rise increases to an almost
constant value until it attains a maximum pressure of 330 MPa.

The dashed lines in figure 6 describe numerical simulations based on the equilib-
rium two-phase equations. A gas-temperature ignition criterion has been used where
Tig = 435 K. This very simple attempt at modelling ignition predicts a delay of only
0.35 ms. Further, the rate of rise in pressure after ignition is much higher than in
the experiment. From this it is fair to say that the equilibrium model inadequately
captures both ignition delay and the early stages of combustion. Along with this the
peak pressure is lower than the experimental prediction by almost 30 MPa.

Figure 7 compares the numerical simulation with a one-step gas-phase reaction
and experiment (where EA/R = 500 K, Ag = 0.000 15). The ignition delay of the
simulation is now greater than experiment. The increase in delay from 0.35 ms to
5 ms is attributed to the measurable time delay between first gasification and gas-
phase reaction not permissible in the equilibrium solution. The shift in time produces
much better agreement in the time at which the pressure peaks. However, despite
this agreement comparison of the simulation and the experiment still displays marked

† Courtesy of the Defence Evaluation and Research Agency, Fort Halstead.
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Figure 7. Pressure distribution at locations one (a) and three (b): experiment (—);
one-step non-equilibrium simulation (- - -).
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Figure 8. Pressure distribution at locations one (a) and three (b): experiment (—);
two-step non-equilibrium simulation (- - -).

differences—in fact this curve merely looks like the equilibrium curve displaced in
time by 5 ms and the rate of rise in pressure at early times and peak pressures is still
inaccurate.

Now compare these solutions with a two-step reaction scheme, described in figure 8.
In this simulation the first step will be assumed to take place infinitely fast and so
energy released due to the first reaction, QR, is released instantly on gasification.
QR ≈ 20% of the total chemical energy of the propellant. This energy release is
now responsible for the gradual increase in energy at early times. At 4.5 ms the
second reaction takes place (where EA/R = 1200 K and Ag = 0.000 04), releasing
the larger proportion of energy Qg (80% of the total solid chemical energy) into
the chamber. The combination of slow energy release followed by more rapid energy
release produces a substantially higher peak pressure that could not be produced
using either of the previous models.

The general form of the curve provides a closer fit to the experimental data; how-
ever, ignition still occurs (about) 1.5 ms earlier than seen in the experiment. Close
scrutiny of the experimental pressure curves indicates that the pressure in the cham-

Phil. Trans. R. Soc. Lond. A (1999)



3652 C. A. Lowe and J. F. Clarke

ber does not change over the first 2 ms. The model above assumes that the solid
surface decomposes when the gas-temperature reaches ca. 420 K. This corresponds
with first energy release produced by the first chemical reaction and the pressure
slowly increases. It is apparent that this initial rise in pressure is occurring 1.5 ms
too early.

The first possible explanation is that the solid does not actually gasify at 420 K and
it takes 2 ms before heat transfer, between the gas and solid, produces any gasification
of the propellant. Many early theories (see, for example, Hermance 1984) concentrate
on modelling this part of the ignition cycle. In these works, distinct periods of ‘inert’
heating followed by surface reaction have been identified, prior to ignition. A simple
model of these heat-transfer processes has not been included here but details can be
found in Lowe (1996).

Secondly, as mentioned previously, the first chemical reaction has been assumed
to occur at an infinitely fast rate; if this were not so then the time between first
gasification and the energy release from this reaction could explain the 1.5 ms time
delay.

6. Conclusions

Gas-phase chemical kinetics have been included into internal ballistic models and
the effect on burning and ignition explored. The investigation indicates that non-
equilibrium effects can be used to describe the pressure histories more accurately
during the early stages where the equilibrium models are inaccurate. The single-step
chemical scheme can improve modelling of ignition by providing a rational under-
standing of why first gasification can occur prior to ignition and why ignition is
often observed away from the primer stimuli. However, after ignition the general
rate in change of pressure will be identical to the equilibrium model. The two-step
chemical model retains all the attributes of the one-step model and also provides an
explanation for the gradual increase in pressure at early times that can be seen in
experiment. By adopting this idea much higher peak pressures can also be predicted.

We thank the WX6 department of the Defence Evaluation and Research Agency (DERA) at
Fort Halstead, UK, who sponsored the work and provided valuable experimental data (British
Crown Copyright 1997/DERA).
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